![卫星轨道力学算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/375/33239375/b_33239375.jpg)
2.3 椭圆运动的展开式
在很多问题中,需要将有关量通过平近点角M表示成时间t的显函数,但由Kepler方程可知,这将涉及超越函数关系,无法直接达到上述要求。因此,必须将等量展开成M的三角级数,而在这些展开式中又要用到两个特殊函数:第一类贝塞耳(Bessel)函数和超几何函数(或称超几何级数),为了读者引用方便,首先简单地介绍一下这两个函数的有关知识,详细内容请翻阅特殊函数一类书籍。
第一类贝塞耳函数Jn(x)是二阶线性常微分方程
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-3.jpg?sign=1739439872-HKW6SIzBhTxmaKs1tFpEplc8FXUHJ71E-0-c3857f3a04e39c7cb480b58c0142e700)
的一个解,它由下列级数表达:
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-4.jpg?sign=1739439872-uTFh8WNJ7GVFsUdb7zxf4gAnhNN1dFc9-0-9b51110247c9a0e62277871773ab1170)
其中n为整数(n=0,1,2,…),x为任意实数,而k!由下式定义
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-5.jpg?sign=1739439872-pOPeNV4uYZRfbg07k9jFGVOM8OCfpHJ1-0-835169f99e45a0c7e2d784f19e9b0957)
Jn(x)又是展开式的函数,即
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-7.jpg?sign=1739439872-UvVZiBGvj5eYc2piSdkKkGp1BYfrXfXi-0-3e42e61def04ad1ee41f8bc36b42f56e)
其中e是自然对数的底,而z可以是复变量。由此可给出Jn(x)的积分表达式,即
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-8.jpg?sign=1739439872-SrBP6TWpndE8CNYMThbxGehx83z72sTu-0-bd11574c76d19fe0950fbd0eaf0c80ab)
根据Jn(x)的定义不难得出下列一些重要性质:
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-61-9.jpg?sign=1739439872-8IyjVdVurt3A80oC5dyclZMxAYbddqdA-0-cd40500ce48080f6fbe8fc928da0f176)
超几何函数F(a,b,c;x)是如下二阶线性常微分方程
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-1.jpg?sign=1739439872-XKMWoUAI3jq6GPmHscLvy4Ia0VVEVRGu-0-3c01a3862c4d9fca967a9392ec854f99)
的一个解,其中a,b,c是常数,解的形式如下:
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-2.jpg?sign=1739439872-7Ji7rF6ouRrybILNmh2P4FgsXai7GDfx-0-72241827a10c2946fb60cc9953429d94)
2.3.1 sinkE和coskE的展开式
这里直接列出展开结果,它们在本章参考文献[1]~[2]中有详细的推导。对k>1有
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-3.jpg?sign=1739439872-HLPEWfRPnjBFLiJyLgf0F2Zcy5s1G6HK-0-03b167a507d1c5f2c2458baca34835bf)
对k=1有
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-4.jpg?sign=1739439872-ZnwCzoPNDohnkTgJugVFM9CxfPllVCYV-0-1ba41ee45c324b786814cf87c8fbca3e)
2.3.2
和
的展开式
由
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-7.jpg?sign=1739439872-6tcbUewMuJR8r27YVc5HgqHnPM90U9Ne-0-f078135e69e52b76b93da774426fc173)
可给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-62-8.jpg?sign=1739439872-6bbwVE67Zf8QLhsxrzrbe7oIhkzyKP1e-0-2885b6c514647515a7263cf09f94f98c)
2.3.3 sinf和cosf的展开式
利用偏导数关系式(2.61)可得
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-1.jpg?sign=1739439872-BJoEFpx1Z0onhCv7w0o5fshHtstYQ0FS-0-4940a738fc0dcb324144839e967f211a)
由此给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-2.jpg?sign=1739439872-jAfTskhqd0FfQtRbL25a6IOFY1yQe9kP-0-706d68784f087d39452a34812780faaa)
由轨道方程(2.16)给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-3.jpg?sign=1739439872-YAXheHId7gBAfHeDDDmqpRiDBSKJVlI0-0-eac4b05de80c02127a35f7a7678df3b4)
2.3.4 f的展开式
利用sinf和cosf的展开式,取到e4项有
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-4.jpg?sign=1739439872-bQrKj5JDEDIVl9ROY6L5GwfEvCp1P06G-0-ef3168f198ea6e6d42d20d33c8860843)
2.3.5
和
的展开式
这里n和m均为任意整数(包括零)。若仅用上述基本展开式,要给出这两个函数对M的三角级数(特别是一般表达式),那是相当困难的,下面就对这两个函数直接进行傅立叶(Fourier)展开。函数F(f)展成傅立叶级数的基本形式为
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-7.jpg?sign=1739439872-2HfA7LqH5dlzrPVoAxyfkWq1PWmZxBqu-0-acaddc667873331315787ab47ecaf3e4)
是偶函数,bp=0,且
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-9.jpg?sign=1739439872-h08VnCZJ1mLqAHELX2nb5FxX8qsgML1P-0-881c8332044ae379dff055aeaa618848)
对于被积函数的第二部分,可令p=-p,对应p=-1,-2,…,-∞,由此给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-10.jpg?sign=1739439872-eji525oZDL2aD06hdyaCyQRPHKDej3q4-0-3ed56d5e484119fd99f8ccab12aa8e7d)
其中
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-63-11.jpg?sign=1739439872-GI5XEo6DwnG2DFludUlntIqQluJsJScY-0-3deb8224cfc23449986a1a52c3693f22)
是奇函数,ap=0,bp的计算公式为
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-2.jpg?sign=1739439872-dCgMErJpY0NjwgjrxYQm4rlnU0x3FUTT-0-ec08906ea12ad4c91fe90b2b4490a7fc)
对被积函数第二部分的处理同上,结果为
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-3.jpg?sign=1739439872-1Ji7lUL3BYlvnuDWskRvpH5yWpxzNol7-0-9ada31ca5dd6c34803866c2e6bbf0753)
由于上述两个函数的展开式系数相同,可用指数形式将它们表达成统一形式,即
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-4.jpg?sign=1739439872-nBcDehuSHMYkBqbK7TArFJ2aCXiNPefc-0-9aea8d5c27fe60313ae10256aef3f727)
其中是虚数单位。因
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-6.jpg?sign=1739439872-e72s5hUebMmeuEsxoKILL5UC0hwOefR3-0-227645e424c5f0cbd12604d41e89e891)
(2.99)式中的就是由(2.96)式表达的
,称为汉森(Hansen)系数,它是偏心率e的函数,无法用初等函数来表达它的具体形式,只能引用贝塞耳函数和超几何函数,详细推导见本章参考文献[7],这里直接列出展开结果。
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-9.jpg?sign=1739439872-Albusxc2aH7BYqOS0MJrwAFWGcYCu6hg-0-4d173e8ef101bd094883b2a7f2a6ced5)
由(2.96)式即可给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-10.jpg?sign=1739439872-R1v6C0CxSxpah0gvsppblJocvs1sG5Dj-0-4be8c7dc1343856e3f35f7db1686ebd2)
又根据可知
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-12.jpg?sign=1739439872-DXH17h7ynvNie1ReB5JhHZ5zdj7xtmHd-0-7816bef7a5da0df57a67736d748f2094)
由上述展开式可以看出,要具体给出和
的展开式,是较麻烦的。为此,针对实际应用状况,作者给出了精确到O(e4)的
表达式[8],形式如下:
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-16.jpg?sign=1739439872-Sd02ZTrA3Rp9hAo72VF7askQKPhJVMy2-0-c362b3996e0a5d213c6db49765fe0a35)
以上各展开式的系数都是关于偏心率e的无穷级数,只有当e<e1=0.6627…时才收敛,e1就称为拉普拉斯(Laplace)极限。
除上述展开式外,有些问题还需要其他类型的展开式,下面给出。
2.3.6
对f的展开式
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-64-18.jpg?sign=1739439872-4wwRRIeGcAdr1ffusgKq4wuRaRawAy3Z-0-83f5f93d8a977b83438572f622951ebd)
其中p为正、负整数,β的意义同前,见(2.101)式,Tn(p,q)由超几何函数定义[2],即
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-66-1.jpg?sign=1739439872-wxYEWaYFBjfVLXVmj6kd8t5JfXjs5tGr-0-8bbf6d2fdd99196df39dea246186c366)
当p=-1,-2时,有
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-66-2.jpg?sign=1739439872-oYahL5OeCWWyaaHkUJOAKfKTR4ExvUOI-0-0c148cc10afacba44c2423e3e75e23e7)
由上述一般表达式可给出如下两个具体展开式:
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-66-3.jpg?sign=1739439872-GyZrZ9qQ7W7IVrnunV4fd1oRqbhvaINI-0-bd0730f6b08237bd134fec8521fc1841)
利用这两个展开式,由
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-66-4.jpg?sign=1739439872-TAGEixsqXXfQZHVO3rhMgZ9ttAZgxNV5-0-49304bf8a20d35a7308f2070b17eecb4)
积分即给出
![](https://epubservercos.yuewen.com/A499B2/17770365207625606/epubprivate/OEBPS/Images/image-66-5.jpg?sign=1739439872-cLIYyYnoM4o58c1FrXOwo0AkIJaElgot-0-d151e7b0b7fa53f1d19bc956996e6ef4)