智能预测性维护
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

前言

随着信息、机械、系统工程和管理等学科的发展,特别是以移动互联网、大数据、人工智能等为代表的新一代信息技术,推进了智能制造的快速发展。

在设备的运营维护领域,为解决设备运营与维护服务的异地化、实时化和及时性等问题,设备制造或运营企业通过采集设备运行数据,并上传至企业数据中心(或企业云),使系统软件能够对设备进行实时在线监测、控制,并经过数据分析进行预测性维护,逐渐形成了基于(移动)互联网的维护、维修和运营(Maintenance Repair&Operation,MRO)技术服务网络和相应的数据支撑环境,如产品状态、设备状态、环境状态、业务运营状态、人员状态、社交网络数据以及客户反馈数据等大数据信息,并体现出全球性(互联网连接)、实时性(工业互联网支持的状态检测)和及时性(移动终端调度)的特性,使得设备全生命周期的知识能被高效和自发地产生和利用。然而,由于MRO技术服务网络中装备系统故障的高随机性和维护需求的高不确定性,面向大范围MRO网络环境中多个不确定性的协作主体和高随机性的设备故障,如何可靠地获取、建模、推理和挖掘来自产品状态、环境状态、设备运行状态、人员状态、业务运营数据、社交网络数据以及客户产品反馈数据等装备全生命周期中的异构大数据信息?如何利用上述信息准确地预测设备故障和维护需求,制定合适的维护和优化策略?如何在有限服务资源下,充分利用互联网环境下广泛存在的共享服务资源,最大限度地响应网络维护需求,建立与客户长期全面的合作关系?更进一步,如何通过信息物理系统(Cyber Physical System,CPS)将维护决策反馈给制造系统,实现误差补偿、调节和反馈控制?这些问题成了智能制造环境下MRO技术服务网络中各个参与主体的共同诉求,需要研究面向智能运营环境的多源异构数据高质量获取与融合理论与方法、数据驱动的装备及部件故障预测理论和方法、面向装备运营网络的大规模维护决策理论基于CPS的反馈控制方法等大数据环境下面向MRO技术服务网络的智能预测性维护(Smart Predictive Maintenance,SPdM)理论、技术和方法。

本书系统地介绍了新一代信息技术环境对制造业的影响、智能制造模式下的设备维护问题,以及各种维护策略,如预防性维护、预测性维护和智能预测性维护等;详细地介绍了故障预测的方法体系,包括基于物理模型的故障预测、基于可靠性模型的故障预测、数据驱动的故障预测、融合模型驱动的故障预测等内容;结合智能制造的参考体系结构,系统地介绍了智能预测性维护的技术体系与框架,如面向智能工厂的智能预测性维护、面向智能工厂运营网络的智能预测性维护框架等;注重智能预测性维护的关键理论、方法和技术,例如,基于IoT的感知资源管理与车间无线路由技术、大数据驱动的故障预测理论和方法、维护决策和优化方法、网络决策和优化方法以及基于CPS的虚拟控制技术等,较全面系统地阐述了设备维护领域正在兴起的理论、技术和方法,涉及面广,内容丰富;努力反映了国家新一代智能制造和新一代人工智能的战略部署及实施情况。

本书具体内容安排为:第1章对智能制造模式下智能预测性维护、设备维护策略与发展趋势进行综述,并为全书内容的展开进行铺垫;第2章介绍故障诊断与预测方法;第3章结合智能制造的参考体系架构,系统地介绍智能预测性维护技术体系与框架;第4章介绍基于IoT的感知资源管理框架与模型;第5章介绍面向复杂制造环境的无线路由模型与算法;第6章给出数据采集的协议集成与设计案例;第7章讨论数据驱动的故障诊断方法;第8章介绍数据驱动的故障预测模型与方法;第9章讨论智能工厂的维护优化调度与决策;第10章介绍大范围维护服务预测与优化配置;第11章讨论基于信息物理系统的运行过程控制。

本书受到国家重点研发计划项目“面向有色金属冶炼流程精细管控的网络协同制造关键技术与平台研发(2019YFB1704700)”和国家自然科学基金项目“互联网与大数据环境下面向高端装备制造的智能工厂运营优化(No.71690234)”的资助。全书由刘敏、李玲、鄢锋著,特别要感谢马玉敏对11章的贡献。本书得到同济大学电子与信息工程学院系统工程专业博士生章锋、徐高威的协助,谨在此对他们表示衷心的感谢。

由于本书涉及的范围比较广,所讨论的问题比较新也比较复杂,书中难免会有不足之处,诚挚地欢迎广大读者批评指正。

著者

说明:为了方便读者学习,书中部分图片提供电子版[提供电子版的图,在图题处有“(电子版)”标识],读者扫描二维码即可下载。