![MATLAB金融风险管理师FRM(高阶实战)](https://wfqqreader-1252317822.image.myqcloud.com/cover/187/36862187/b_36862187.jpg)
3.5 平面和曲面梯度分布
这一小节介绍常见三维平面和曲面梯度分布。图3.24展示一个垂直于x1-z平面,具体解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712532.jpg?sign=1739158575-AK6BeMfOYhy81WYlkFdi1abXH22DDSTq-0-a3324e8617486998a2cfb54063a87328)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712533.jpg?sign=1739158575-4j3cmLtRAqgZx3eCt9lfRwVXZ44wUhs0-0-b0d786e20d8d3dce461b6fb78eedf19a)
图3.24 垂直于x1-z平面,梯度向量防线为x1正方向
二元函数梯度向量如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712534.jpg?sign=1739158575-8aIQ5mVJ15B5GfuH5hFqvIAejvob2cby-0-fd6085cda5aa501d7b4b01ad11ece1ca)
如图3.24所示,发现此梯度向量平行于x1轴,方向为x1正方向,向量方向和大小不随位置变化。沿着梯度方向运动,f(x1, x2)不断增大。
当改变符号x1时:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712536.jpg?sign=1739158575-nqcmmnJ0wNUGIl7fCYu4sQcu9rm24oMH-0-5d9f914249fe54a110bc3a77895ec5da)
二元函数梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712537.jpg?sign=1739158575-aVKlrOuVWNJxBVate71Ukxdd8ztCuFkX-0-7c594e235bff5af666a10eed4036dcae)
图3.25告诉我们此梯度向量同样平行于x1轴,方向为x1负方向,向量方向和大小不随位置变化。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712540.jpg?sign=1739158575-P2FqpbKVCtTwIM0D3k7Gh5ya969yDDe3-0-f45280fc8bc6662b43f40a4679bfd58b)
图3.25 垂直于x1-z平面,梯度向量防线为x1负方向
图3.26展示平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712541.jpg?sign=1739158575-qxxLCOTBxq81ZX8Z9LA14Z4wL40BVx5y-0-e14bdf8e7a727ed5b4a7d5273bff0a2b)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712542.jpg?sign=1739158575-1SaQKHM95Qns1zUqDg5C8qIZiAavSz5K-0-305d8e5c8d182f4f7f86a1d338eefdbe)
图3.26 垂直于x2-z平面,梯度向量防线为x2正方向
二元函数梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712543.jpg?sign=1739158575-XbqayuMHFWLWCxx2mgfte3Vwoa7kZ1b9-0-2d845618f46b79b341d1aabc31e50477)
通过观察图3.26,发现此梯度向量同样平行于x2轴,方向为x2正方向,向量方向和大小不随位置变化。
图3.27中平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712545.jpg?sign=1739158575-9BHEufnZEZzp32BPZHYBswGlqeLNjWc4-0-57762b66f3ad98e6d51bd9d58369fdbc)
该平面梯度也是一个固定向量,如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712546.jpg?sign=1739158575-ohG4uav5JRew4JN7DuQD34kvh4v2cKHe-0-c574b337eaf9ceb8fdb49fd9caf7ae79)
如图3.27所示,梯度向量和x1轴正方向夹角为45°,指向右上方。沿着此梯度方向运动,f(x1, x2)不断增大。f(x1, x2)等高线相互平行,梯度向量和函数等高线垂直。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712548.jpg?sign=1739158575-flPyE3v1mnjqKDlGPcTsho9NhI4eezBC-0-632cf4bfd6d3a566504c1a88150f25a9)
图3.27 f(x1, x2)= x1 + x2平面和梯度
图3.28中平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712549.jpg?sign=1739158575-lqALG2U1JoIxUothb9ti2qemOMv4uGqG-0-6131a134334819951d4d131d98e7a187)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712550.jpg?sign=1739158575-QrPxEgumyKoDCGxrAR5p5xC76pkJ1353-0-e567f2b8bcf7d1b47f147d0a9836d5bc)
图3.28 f(x1, x2)= x1 - x2平面和梯度
观察图3.28,能发现此平面梯度不随位置变化:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712551.jpg?sign=1739158575-reOcvK0Aaqrd7wQLENFC5aBhZeGk2q7W-0-ed0b803daea6fa52be8ec9c2d2a00d45)
该梯度向量和x1轴正方向夹角为45°,指向右下方。
图3.29中开口朝上圆锥面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712552.jpg?sign=1739158575-ySptMSdcd6zBf3e2t8OCaEZcJOzCYKyf-0-f0a055682ef4f82b1b1400b8beac4b2c)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712553.jpg?sign=1739158575-7zRIA1HzOUyBXvFI9p3TULq03j8iX2kg-0-f8ce48d098c7e816ad42d1508971ec87)
图3.29 开口朝上圆锥面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712555.jpg?sign=1739158575-XoTSJYR6k378fV8P3kwTPgCYIwuuWjtx-0-f99e696995e71b1a85911c22dd71c3b8)
该曲面梯度向量随着位置变化而变化。但是梯度向量模,即向量长度不变,具体计算如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712556.jpg?sign=1739158575-NMeRMQu4ErHf9NvKM3DH8za96uHwuBq7-0-e58b656ca62c5008480112980e5f1600)
图3.29梯度向量指向极小值相反方向。另外,函数在(0, 0)点不可导,即梯度向量在该点没有定义。
图3.30中开口朝下圆锥面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712557.jpg?sign=1739158575-AlWWVyXdof552ntTxyKpmDFiPkN0sE5l-0-78800f8c00678d0dae58166cea99e3b2)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712558.jpg?sign=1739158575-M3chKlyzmHIwgHOSJHsKWz8Nkde2k2rC-0-94087a287264f633f7f664f6157dd667)
图3.30 开口朝下圆锥面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712559.jpg?sign=1739158575-haKvtbVamV49mmCKHxrB8E9bXO2ln5vx-0-cc3838e5b1446cd7d8d99bb67ff9015b)
容易得出结论,曲面不同位置梯度模一样大小。图3.30梯度向量指向极大值方向。同样,函数在(0, 0)点不可导。
图3.31展示开口朝上正圆抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712560.jpg?sign=1739158575-xyBhxqPoD7dJMRIMgLIhSp6eM7wkkDDa-0-7be1f431d7c453aaad82ce20465c7e34)
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712561.jpg?sign=1739158575-MRd5uIVGwAcWxZslEpnXE9RiEbka6WCF-0-77684c33fc23df86506d583180366300)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712563.jpg?sign=1739158575-8KqymZDdq7ueGCQvrlRkd43b2XSXfQa2-0-c52d97a6661f950f2b9b1682873b6f4b)
图3.31 开口朝上正圆抛物面
该曲面梯度大小和方向随着位置变化而变化。值得注意是,对于正圆抛物面,同一等高线上不同点梯度大小相同。图3.31所示,梯度向量方向背离最小值点。极小值点处,梯度向量模为0。
图3.32展示开口朝下正圆抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712564.jpg?sign=1739158575-nSKWvSlxxelfyfzlvUoOiUfDSloGSxwl-0-433a0c1870b5fd7dde65e6cff04d8a91)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712565.jpg?sign=1739158575-eVeZMq7ByYCXN4YPkLjMbo9wcGLHwWe9-0-f99fc43adc43aae7281c092f633c3708)
图3.32 开口朝下正圆抛物面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712566.jpg?sign=1739158575-mo9fXCvvAUNE9Xb5INJma8s4eGqtuCTy-0-b0a28f42226386df0a4d354955d54bdb)
图3.32中梯度向量方向指向最大值点。
图3.33展示双曲抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712567.jpg?sign=1739158575-vTJqbsqGm28RKWhiWosDCRayV1eKIX65-0-bbd716b549e04cc86752677b7c35a2d3)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712569.jpg?sign=1739158575-WdEYKCzGeZXys4SLjUZB15OhVTAx5qnK-0-131e8818a6d39e22158d0e0e232e6e6c)
图3.33 双曲抛物面
以上曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712570.jpg?sign=1739158575-wKwfBHUXWeFAQaKbRoEz7c3LRwhnPqpQ-0-f0968c4500bf3346fcf537b7bfacb9bf)
图3.33中,鞍点为(0, 0),在该点上有一些梯度向量指向(0, 0),另外一些梯度向量方向背离(0,0)。虽然在(0, 0)点,梯度向量为零向量,该点并非极值点。
图3.34展示旋转双曲抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712572.jpg?sign=1739158575-EBjMi1Fr8RDt6LN3jOFlHBSSs5JtqEel-0-48b425cceddfe01aef08c7fd57e98237)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712573.jpg?sign=1739158575-mTx0CTLA9MGAb98oN8fXCpPuIjn8wqTA-0-884449e16d7a966805df0a2cd5cd517e)
图3.34 旋转双曲抛物面
上式曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712574.jpg?sign=1739158575-A42g0qZAYC4fwZ0F0r6D7CYLcoyvrN88-0-223777010816b47039b9bc6661dbe3ed)
图3.34中,鞍点同样为(0, 0),同样一些梯度向量指向原点,另外一些梯度向量背离原点。
图3.35展示山谷面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712575.jpg?sign=1739158575-OPPi60MlLe9Czg4E7dh2U1fazcDkDebc-0-cb7c941a4b7b0f0099bff6d6b1d2d047)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712577.jpg?sign=1739158575-NNXzNdCruBg0OA26owGcBKassSSjidgN-0-beab52627af731a8e563f99839006a96)
图3.35 山谷面
此曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712578.jpg?sign=1739158575-KZIGpacT61f66zhsdq8FTLGpiu8pEzQ1-0-a107fbbb9e6f998f8a8851d027a54713)
如图3.35所示,曲面等高线平行于x2轴,曲面梯度垂直于x2轴。梯度向量平行,大小随着位置变化。曲面极小值点无穷多个,这些极小值点均在一条直线上;梯度向量均背离这条最小值所在直线。
图3.36展示山脊面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712579.jpg?sign=1739158575-5egPkmOpeqf7lT57ICPP7afu3BVNZzke-0-117822c4778a98bf2a68ea2f50b23984)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712580.jpg?sign=1739158575-UFsu7xV4Tk4FudABcGq52jGc7MSe7SRG-0-cba24082d917daa72d33207e91a229ce)
图3.36 山脊面
该曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712581.jpg?sign=1739158575-QFtDc3N4xAnbQ8sYefa1sHQ82IZUpS3i-0-6ba71ddde87f12ceaab3eb2a5785f376)
如图3.36所示,曲面等高线平行于x1轴,曲面梯度垂直于x1轴。曲面极大值点无穷多个,梯度向量方向均指向这条最小值所在直线。请读者根据本章代码自行编写代码绘制本节图像。