参考文献
[1] Etgar L,Gao P,Xue Z,et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society,2012,134(42):17396-17399.
[2] Wu W Q,Huang F,Chen D,et al. Solvent-mediated dimension tuning of semiconducting oxide nanostructures as efficient charge extraction thin films for perovskite solar cells with efficiency exceeding 16%. Advanced Energy Materials,2016,6(7):1502027.
[3] Zhou H,Chen Q,Li G,et al. Interface engineering of highly efficient perovskite solar cells. Science,2014,345(6196):542-546.
[4] Chen W,Wu Y,Yue Y,et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science,2015,350(6263):944-948.
[5] Wang H-H,Chen Q,Zhou H,et al. Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives. Journal of Materials Chemistry A,2015,3(17):9108-9115.
[6] Yang D,Zhou X,Yang R,et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy & Environmental Science,2016,9(10):3071-3078.
[7] Liu D,Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature photonics,2014,8(2):133-138.
[8] Tseng Z-L,Chiang C-H,Wu C-G. Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Scientific reports,2015,5:13211.
[9] Lee K-M,Chang S H,Wang K-H,et al. Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics. Solar Energy,2015,120:117-122.
[10] Zhang P,Wu J,Zhang T,et al. Perovskite solar cells with ZnO electron-transporting materials. Advanced Materials,2018,30(3):1703737.
[11] Bi D,Boschloo G,Schwarzmüller S,et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale,2013,5(23):11686-11691.
[12] Son D-Y,Im J-H,Kim H-S,et al. 11% efficient perovskite solar cell based on ZnO nanorods:an effective charge collection system. The Journal of Physical Chemistry C,2014,118(30):16567-16573.
[13] Mahmood K,Swain B S,Jung H S. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale,2014,6(15):9127-9138.
[14] Kim J,Kim G,Kim T K,et al. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. Journal of Materials Chemistry A,2014,2(41):17291-17296.
[15] Correa-Baena J P,Tress W,Domanski K,et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy & Environmental Science,2017,10(5):1207-1212.
[16] Jiang Q,Zhang L,Wang H,et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy,2016,2:16177.
[17] Ren X,Yang D,Yang Z,et al. Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS applied materials & interfaces,2017,9(3):2421-2429.
[18] Yang G,Lei H,Tao H,et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small,2017,13(2),1601769.
[19] Correa-Baena J-P,Tress W,Domanski K,et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy & Environmental Science,2017,10(5):1207-1212.
[20] Leijtens T,Lim J,Teuscher J,et al. Charge density dependent mobility of organic hole-transporters and mesoporous TiO2 determined by transient mobility spectroscopy:implications to dye-sensitized and organic solar cells. Advanced Materials,2013,25(23):3227-3233.
[21] Kwon Y S,Lim J,Yun H-J,et al. A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy & Environmental Science,2014,7(4):1454-1460.
[22] 王鸣魁. 有机无机杂化固态太阳能电池的研究进展(太阳能电池专题). 物理学报,2015,64(3):78-83.
[23] 曲浩. 低温等离子体处理对钙钛矿太阳能电池性能的研究[D]. 北京:北京印刷学院,2018.
[24] Wang Y K,Yuan Z C,Shi G Z,et al. Dopant-free spiro-triphenylamine/fluorene as hole-transporting material for perovskite solar cells with enhanced efficiency and stability. Advanced Functional Materials,2016,26(9):1375-1381.
[25] Xu B,Bi D,Hua Y,et al. A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Energy & Environmental Science,2016,9(3):873-877.
[26] Liu K,Yao Y,Wang J,et al. Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Materials Chemistry Frontiers,2016,1:100-110.
[27] Park S,Jin H H,Yun J H,et al. Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chemical Science,2016,7(8):5517-5522.
[28] Zhang F,Liu X,Yi C,et al. Dopant-free donor(D)-π-D-π-D conjugated hole-transport materials for efficient and stable perovskite solar cells. Chemsuschem,2016,9(18):2578-2585.
[29] Z L,Z Z,Cc C,et al. Rational design of dipolar chromophore as an efficient dopant-free hole-transporting material for perovskite solar cells. Journal of the American Chemical Society,2016,138(36):11833.
[30] Zhao X,Zhang F,Yi C,et al. A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A,2016,4(42):16330-16334.
[31] Zhang F,Yi C,Wei P,et al. A novel dopant-free triphenylamine based molecular “butterfly” hole-transport material for highly efficient and stable perovskite solar cells. Advanced Energy Materials,2016,6(14):1600461.
[32] Bi D,Mishra A,Gao P,et al. High-efficiency perovskite solar cells employing a S,N-heteropentacene-based D-A hole-transport material. Chemsuschem,2016,9(5):433-438.
[33] Molinaontoria A,Zimmermann I,Garciabenito I,et al. Benzotrithiophene-based hole-transporting materials for 18.2 % perovskite solar cells. Angewandte Chemie,2016,55(21):6270-6274.
[34] Saliba M,Orlandi S,Matsui T,et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy,2016,1(2):15017.
[35] Cho I,Jeon N J,Kwon O K,et al. Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science,2017,8(1):734.
[36] Paek S,Zimmermann I,Gao P,et al. Donor-π-donor type hole transporting materials:marked π-bridge effects on optoelectronic properties,solid-state structure,and perovskite solar cell efficiency. Chemical Science,2016,7(9):6068-6075.
[37] Su P Y,Chen Y F,Liu J M,et al. Hydrophobic hole-transporting materials incorporating multiple thiophene cores with long alkyl chains for efficient perovskite solar cells. Electrochimica Acta,2016,209:529-540.
[38] Jin H H,Sang H I,Noh J H,et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics,2013,7(7):486-491.
[39] Yang W S,Noh J H,Jeon N J,et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science,2015,348(6240):1234.
[40] Yan W,Li Y,Li Y,et al. High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy,2015,16:428-437.
[41] Qin P,Tetreault N,Dar M I,et al. A novel oligomer as a hole transporting material for efficient perovskite solar cells. Advanced Energy Materials,2015,5(2):1400980.
[42] Docampo P,Ball J M,Darwich M,et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications,2013,4(7):2761.
[43] Jeng J Y,Chen K C,Chiang T Y,et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Advanced Materials,2014,26(24):4107.
[44] 魏荧. 基于掺杂改性的氧化镍空穴传输层制备平面反向钙钛矿太阳能电池及其性能研究[D]. 南昌:南昌大学,2017.
[45] Christians J A,Fung R C,Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society,2014,136(2):758.
[46] Ito S,Tanaka S,Vahlman H,et al. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au:structural control and photoaging effects. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry,2014,15(6):1194-200.
[47] P Q,S T,S I,et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications,2014,5:3834.
[48] Ye S,Sun W,Li Y,et al. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Letters,2015,15(6):3723.
[49] Kumar M H,Yantara N,Dharani S,et al. Flexible,low-temperature,solution processed ZnO-based perovskite solid state solar cells. Chemical Communications,2013,49(94):11089-11091.
[50] Wang K C,Jeng J Y,Shen P S,et al. p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Scientific reports,2014,4:4756.
[51] Ball J M,Lee M M,Hey A,et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science,2013,6(6):1739-1743.
[52] Bi D,Moon S J,Häggman L,et al. Using a two-step deposition technique to prepare perovskite(CH3NH3PbI3)for thin film solar cells based on ZrO2 and TiO2 mesostructures. Rsc Advances,2013,3(41):18762-18766.
[53] Lee K,Yoon C M,Noh J,et al. Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chemical Communications,2016,52(22):4231-4234.
[54] Li D,Shi J,Xu Y,et al. Inorganic-organic halide perovskites for new photovoltaic technology. National Science Review,2018,5(1):559-576.
[55] 李忱. PEDOT:PSS掺杂对平面钙钛矿太阳能电池性能调控研究[D]. 新乡:河南师范大学,2017.
[56] Guo W,Hui K N,Hui K S. High conductivity nickel oxide thin films by a facile sol-gel method. Materials Letters,2013,92(2):291-295.
[57] Berry J J,Widjonarko N E,Bailey B A,et al. Surface treatment of NiO hole transport layers for organic solar cells. IEEE Journal of Selected Topics in Quantum Electronics,2010,16(6):1649-1655.
[58] Irwin M D,Buchholz D B,Hains A W,et al. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences of the United States of America,2008,105(8):2783.
[59] Liu D,Yang J,Kelly T L. Compact layer free perovskite solar cells with 13.5% efficiency. Journal of the American Chemical Society,2014,136(49):17116-17122.
[60] Cui P,Wei D,Ji J,et al. Highly efficient electron-selective layer free perovskite solar cells by constructing effective p-n heterojunction. Solar RRL,2017,1(2):1600027.
[61] Wei Z,Yan K,Chen H,et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy & Environmental Science,2014,7(10):3326-3333.
[62] Chen H,Wei Z,He H,et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Advanced Energy Materials,2016,6(8):1502087.
[63] Sun W,Li Y,Ye S,et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale, 2016, 8(20):10806-10813.
[64] Rao H,Sun W,Ye S,et al. Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. Acs Appl Mater Interfaces,2016,8(12):7800-7805.