![信息融合中估计算法的性能评估](https://wfqqreader-1252317822.image.myqcloud.com/cover/245/27741245/b_27741245.jpg)
3.2 经典UCM方法
3.2.1 问题描述
对于多雷达/声呐场景,在二维极坐标系下,量测信息包括目标的径向距离和方位角。在传感器坐标系下的径向距离和方位角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739232451-w5aY7R0XGwquEeYg3qQqcHmj9XQRy1fP-0-4cfa747767f2e7e39d5fd5338e438451)
式中,r和β 分别为目标真实的径向距离和方位角;上标“l”代表第l个传感器(l=i, j);和
分别为第l个传感器径向距离和方位角的量测噪声,且彼此独立,其均值均为零,方差分别为
和
。则协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739232451-uNUDjSjJnIkA6wXYQ14hDdo8Y1HNtvlY-0-7880782b7bb54bd2666570a5fa33dfba)
假设x、y分别为目标在x、y方向上的真实位置信息,则有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0006.jpg?sign=1739232451-S4BYASsAIfSRAgUkeStCWA3Gj0AYzK7M-0-b28a10846b2e2769901d47ed73a6ad1a)
在笛卡儿坐标系下,建立量测方程:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0007.jpg?sign=1739232451-Vk8lIjIUZkf9BxIAeXBMmS0c9VM5eU6J-0-0d9dac5c74efc9d2e0d7c9fd9906ef05)
由此可利用传感器坐标转换过来的量测值,估计目标的真实位置。
3.2.2 二维情况
对于二维情况,通过极坐标到笛卡儿坐标的转换,第l部雷达的量测转换方法是
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0008.jpg?sign=1739232451-PaTbpGPOgiDwba8UTQhzyRkoBuNmQLCO-0-e79fd3cecb62eee82c0983a2427bbd1f)
若方位角噪声的概率密度函数关于y轴对称,则对式(3.2-5)取期望得到
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0010.jpg?sign=1739232451-cdCk2QgOzKOJqGcyEtd6fVW4kNgMclIw-0-d855ce87c14c48162fa7457337856464)
式中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0011.jpg?sign=1739232451-hHlbNWYwwtBJHWIECYjVUN2EJ8Ybea0Y-0-e02367f81780bca552420e86fecd2ec7)
称为偏差补偿因子。可以看出,当λβ≠1时,式(3.2-6)给出的量测转换是有偏的。假定λβ≠0(至少对于单峰的或在[-a, a](a<π)上均匀分布的概率密度函数,这一条件成立),可以通过下式得到一种无偏量测转换方法:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739232451-VmtpMQUl2mLSm3YRmefhUrWGJEQDqw1N-0-c5aaec208bd0bfca600b499656626ec5)
由式(3.2-8)可以看出,量测转换偏差的本质是乘性的,并且依赖于方位角量测噪声余弦的统计特性。下面以雷达的量测值为条件求解式(3.2-8)的无偏量测转换所对应的协方差矩阵[91]。
量测模型可以重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739232451-jcpm9mLYu4kQyLPBvL8mmorxEpgBtydx-0-44df18b500ba45d0e9f6485443b93048)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739232451-a1FFGjpO0k5pdJm0FChvdSA46IEMd827-0-7b21a76787a36d582e1605cb9b706d12)
相应的量测噪声协方差短阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739232451-7tXfdEIxpVr6g2w0aohnvLS7oSM5NuNf-0-84bbc8a3c8c15497cfaa04d59d1fda31)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739232451-W10OxOQWE4yVvnCukTVnaaYQt2JhMFHO-0-95687a718201cb9e27c5f13385e95ff5)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739232451-83O2s0tW5HgfOVXtyvjwd51G0aSymmb8-0-fcec8183ee87ac6e3b6448b06543a0cc)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739232451-RnXZkcGPpFZetbqNYFEjH7MVKj7dOWn3-0-111bf90c66a0c15e8920a44f68ea98c8)
式中,。
经典UCM方法因为只考虑单部雷达的量测转换后的协方差,忽略了雷达之间的互协方差,因此仅适用于单部雷达的场景。
3.2.3 三维情况
在三维球坐标系下,量测的径向距离、方位角和俯仰角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1739232451-W3QPddKnS9Z6GgblVnLaM07wAFomN8w0-0-4fff0ef70ab29c2980ebcee564343ead)
式中,r、β、ε分别为目标真实的径向距离、方位角和俯仰角;、
和
分别为第l个传感器的量测噪声(l=i, j),且彼此独立,其均值均为零,方差分别为
、
和
。
三维情况下的无偏转换为[91]
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739232451-8Mliyh1NiKKz7Ovo8N9PgEuF5UWwmIXf-0-1daccf5b0039321cefb3775445fb262d)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739232451-Mr1AWle6uPczjcrIw6NQYxwN7qkE2lM5-0-bf1b71dd7133ea762aec37dfc59bf092)
将式(3.2-16)重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739232451-KHCMHhYR3BAUMgCj2U8CDQCd1MmOddUb-0-75746476ac63a91f8e6e82b58e1ad10b)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739232451-BIhJBDhAT9VZVA3EyGEdoevRIxXmUuKY-0-8e0819f1bf828903da3b03ee847f327b)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739232451-HN6QdBNOIK55kAJ6bBUxExQnAESSio2o-0-5f6525a8f8a1d15875b92716196037da)
相应的量测噪声协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1739232451-7uu10OoLCU8t4UxFfaYSRDtlzZo3Lsr5-0-d524d15d0b7a55d8c0309b17b0dd48af)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739232451-YEX87LaPEwdZQKkqR1cNt6KH1377gfVW-0-4ffa5cb8e3c81e21e7257406d242fa72)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1739232451-KxMEW4zMiR62JnuRAbzNnHRbQLMBewpi-0-69e53de289b3da24025db5ca9a2cefaf)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1739232451-ynjSHCtRgvw1gBdHwUntZbQSvoi9Tasc-0-45220724109af6a9e439daab079587eb)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739232451-jJojznG8oZtuW2t7SFXtnbWf7QxqaamI-0-db1837381ac345008d1a9923c97a3ef3)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1739232451-4bkdoEyTosmfvo0m8Jro274m0Ezrfw6s-0-79326e6396d70d92449c956425ba236e)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739232451-qtqcRIVoFzvcrN46LfPkNF6Pmh0MLiFN-0-9f028cdc570278338ee1d553739116d1)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1739232451-pdIkclOZjJwIglwEG8GJUCrcl0a09TxS-0-c1d66750a78a70c62031b866ea15d9cd)
3.2.4 偏差补偿因子的计算
偏差补偿因子λβ、λε、和
可由方位角量测噪声
和俯仰角量测噪声
的概率密度函数来确定。当
、
都服从高斯分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739232451-dQc8mHJhLsjiegIqQkNwmfL5kr7lxkfg-0-1801d1a4b3a336697533e6f39a6c546c)
当、
都服从[-a, a]上的均匀分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0012.jpg?sign=1739232451-hUb2vRHXpzt4yqwVEXtAt8Kg8u6mphx4-0-0b957e285a345d5e7d0f0f6753a1d0e5)