![模糊数学基础及应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/84/27126084/b_27126084.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.4 特征关系
关系的特征函数称为特征关系。
定义1.9 设R∈P(X×Y),则R的特征函数
![](https://epubservercos.yuewen.com/6843AF/15489082204391706/epubprivate/OEBPS/Images/img00012004.jpg?sign=1739274487-EEdIW4B7VnWevosRuLGMQIqurDYlOjTE-0-d85aa59d90c7a0b4fcbcc5d6cb4d84ba)
称为R的特征关系。fR(x,y)可理解为x,y具有R的程度。
若从特征关系的角度看关系的运算,则有
(ⅰ)∀(x,y)∈X×Y,
![](https://epubservercos.yuewen.com/6843AF/15489082204391706/epubprivate/OEBPS/Images/img00012005.jpg?sign=1739274487-Jolbwp4aH9Os5Bu1RKegj9hjWazicTJe-0-6d6d116493b1a5674696435471c0ca48)
(ⅱ)∀(x,y)∈X×Y,
![](https://epubservercos.yuewen.com/6843AF/15489082204391706/epubprivate/OEBPS/Images/img00013001.jpg?sign=1739274487-cFGR4n9udKgNFXu9qzuPjl7X5EGLLa0t-0-6893e5e7786c9066f758de2dd85ec35a)
(ⅲ)∀(x,y)∈X×Y,(x,y)=1-fR(x,y);
(ⅳ)∀(x,y)∈X×Y,(y,x)=fR(x,y);
(ⅴ)R1∈P(X×Y),R2∈P(Y×Z),则∀(x,z)∈X×Z,
![](https://epubservercos.yuewen.com/6843AF/15489082204391706/epubprivate/OEBPS/Images/img00013004.jpg?sign=1739274487-r7vtGH1CkDcov3TTpgca4xLXXV9qBtT0-0-73762206d1c35df8c6f31ded127b4d24)
(ⅵ)R1⊆R2⇔∀(x,y)∈X×Y,1 2;
(ⅶ)R1=R2⇔∀(x,y)∈X×Y,1 2 。