![近代光学](https://wfqqreader-1252317822.image.myqcloud.com/cover/677/683677/b_683677.jpg)
5.3 光纤[21],[58],[59],[63],[65],[67],[68]
前面对平板介质波导和矩形介质波导进行了分析。这里将对广泛应用于远距离、大容量通信的光纤进行分析。通常光纤是一种圆柱形的波导,按照其折射率的径向变化可分为阶跃光纤、渐变折射率光纤等。还有一些特殊的光纤,例如双折射光纤、椭圆光纤、蝴蝶结光纤等。本节将简单介绍阶跃光纤的电磁场理论。
5.3.1 导模与本征方程
由于光纤具有圆柱形结构,采用柱坐标系讨论比较方便。设光纤的轴沿z轴方向,纤芯半径为a,折射率为n1,包层折射率为n2,如图5.3-1所示。
在柱坐标系中,电磁波的电场强度E和磁场强度H分别表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0011.jpg?sign=1738809033-ChVTKOkEyiRzP6nE7TI48XgIxRc2P1AR-0-4d7a489605adb8c8bfca745712b1bc71)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0012.jpg?sign=1738809033-NmiJHhOf8JOiZAeBwf57aCRn0y1OYvvf-0-abead9dadf63bd8ced25af4959d82ff2)
设时谐电磁波沿z轴传播,则光场各分量与坐标z、时间t相关的因子可以写成expi[ (βz-ωt)],将该因子代入柱坐标系中麦克斯韦方程的两个旋度方程可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0183_0013.jpg?sign=1738809033-zGI0soPVbZu7v4BXeWWrLUDcuBOJRoMu-0-3de3d15ed33becc799798968184170e6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0001.jpg?sign=1738809033-DcqmAeHyjNUNU9viNwJpMtSB2U5ZBX5V-0-b41ec4cc841b9340545652bcc2644ff8)
图5.3-1 光纤的柱坐标系
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0002.jpg?sign=1738809033-hScIWEGvpkG7upiHPqqXsnp76myPHIzr-0-4d0039b0420bcf24d0bae72211402db4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0003.jpg?sign=1738809033-NWMftBo7hahKOMDIsg0U2RFKnKS4gx03-0-5a6cd51dd664ff1a336ec9aa96b7c1ea)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0004.jpg?sign=1738809033-e5NjAqBbznkWSLbAqNBd03y66WftC9OH-0-fa6e6da3ff20b34a85a268391bec4f89)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0005.jpg?sign=1738809033-pnckl5UaTmY3xBwTnC9n67QOqaFmXLDG-0-17af9a9eb3a5c6c860056b0719233db4)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0006.jpg?sign=1738809033-EvuHSbTt4afNwGnKk5ESTI4cdAzvyCOM-0-f1f44dab939bc421dc0e2beac32dc602)
如果介质中没有自由电荷与传导电流,Ez、Hz满足标量亥姆霍兹方程,在柱坐标系中可以写成
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0007.jpg?sign=1738809033-wQpChXoqNTYEVSb90tt2iHBFUVGxORed-0-b142cd470ed382f467ca03a5f3b5618b)
式中,ψ表示Ez或Hz。
采用分离变量法求解方程(5.3-4),设试探解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0008.jpg?sign=1738809033-QbfXZ9NK09ljkzpMcGZQwCtMMHGBrxJ6-0-22430975c3298c3e6e8328299733e434)
其中,m=0,1,2,3,…,将上式代入式(5.3-4)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0009.jpg?sign=1738809033-UvlzL26r8TcnLIh7C9IHvzW6EQxAX0wE-0-29cd842105b7de4ec7ace7d782dbb15e)
方程(5.3-6)是贝塞尔方程。令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0010.jpg?sign=1738809033-hHybXhGjrAy2JxHGzuyhkrQAou7J6QcL-0-efe7b7e06af06b6974ad0bae0b9a27b5)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0011.jpg?sign=1738809033-wYMgsVZkJTSVNRFPxEp80N3fk1AIYYp9-0-be01aca90c59ebc17451e344b0457ad8)
则在芯层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0012.jpg?sign=1738809033-2Eh90TvYnMAdeyEKN1WzRF4wFNq3NwRj-0-6bee834ae186ebe67b52a18467607567)
在包层,方程(5.3-6)可写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0013.jpg?sign=1738809033-DS1kY27xJwrMX3Zw0Gj4EcBZrjVPg5Cv-0-7f19452ad7de361cf1cefd2de2c4f167)
考虑到在光纤中传播的电磁场必须满足:当r<a时,E(r)有限;当r>a时,E(r)趋于0。因此可以取的解为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0014.jpg?sign=1738809033-GzXVjmbnd3JYvhjhmJ4i2bGvYnMteU5H-0-5917e3a9a99b8aebb424c5288696acc1)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0184_0015.jpg?sign=1738809033-7t2Fjl31GFKUoFmLbqtGqrtaYJxElSpR-0-d09a4608e55cdbfeea6ffd66ba993829)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0001.jpg?sign=1738809033-XMUwtI7cqaVuyG0kFHkmJQwgx5D4UdgS-0-11715fa050e2094cc53cee23fa605538)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0002.jpg?sign=1738809033-ZsTM2cVZIvePhlVRLMGFZNmBSRVfNf8g-0-871767a016f292af4648d18cc7214ec4)
式中,。令Ua=U/a,Wa=W/a,Ua、Wa分别代表光纤芯内的横向相位常数和包层内的衰减系数。Jm,Km分别为第一类贝塞尔函数和第二类修正贝塞尔函数(汉克尔函数),图5.3-2(a)所示为几个低阶的第一类贝塞尔函数曲线,图5.3-2(b)所示为几个低阶的第二类修正贝塞尔函数曲线。
在芯层与包层的边界处,电场和磁场的切向分量连续,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0004.jpg?sign=1738809033-NlEZxRc3Kp0yQQrpalzMZwoN3mq1pYYe-0-011ce3837d682f115fc285b193974336)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0005.jpg?sign=1738809033-HO3pMgRHNOHQUwsrPndwpkXuUJKj02JJ-0-456a739f20e8d4ac2eddde84b16de6cd)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0006.jpg?sign=1738809033-D0ER4xkBBfLy993Q5wUi4OsWkXBwp3iB-0-35f2e0852023b530711419bd5f69a6ac)
图5.3-2 两种贝塞尔函数曲线
将式(5.3-9)代入式(5.3-10),得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0007.jpg?sign=1738809033-OfQ5mu7Cogrq5Zkly24wmS8O4b0Skc29-0-c562e5098ff47fa7a61eaa04a79504a9)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0008.jpg?sign=1738809033-eunO5ZIRPcUwNmVNpYQ0Y71w3cTMmywu-0-4c2a2a8e4af5875f5a916e533c098a2c)
令
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0009.jpg?sign=1738809033-Xhmb1zbUvhHyCLwU62SiwnlWB4kV4cU5-0-d621d8b06899335b310334674f6fbe65)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0185_0010.jpg?sign=1738809033-ebhoPdZsMjp0hplqVuHILtmR2zv4KHB3-0-1c66d7a1015bcc4e70e373141c05ba2d)
这样,可以将纵向电场分量和纵向磁场分量表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0001.jpg?sign=1738809033-F9DqKmB9fc1TaY47aCwDr4HBxtkNKJWJ-0-aafd35eeb16994ae241c58acd2b3c825)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0002.jpg?sign=1738809033-2ackEvzNgZn1AFY0PZkgnwaTVNK7bTqt-0-c80f247be3e4e6d9152683f1e91445a0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0003.jpg?sign=1738809033-jB73zqQ0uXeKT8YNTkuUz5sfcFgW783F-0-aa957ffc7cc69e157c6bf7f4e5de1334)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0004.jpg?sign=1738809033-kzBRVgerVOoq1ikqKR7Ckpz8WKsEgNP5-0-3ee894aa081c4303425716b56514fb33)
上面表示中略写了各项共同因子exp i[ (βz+mθ-ωt)]。求出纵向分量Ez、Hz 后,就可根据式(5.3-2)和式(5.3-3)求出其他横向分量,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0005.jpg?sign=1738809033-jMi1N2aC0ft9zVR7j0jUJwssxk7dT65C-0-3ebffb0a4a5e1e0d6240a26e5348b0e0)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0006.jpg?sign=1738809033-SihI86F5dwq8uzyxGbFPIqYv2x5MWhiA-0-2ae7f64be47f6159a26fdd98ddb418e8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0007.jpg?sign=1738809033-dm2DayPqPNVpJMsZTcBeBfMrNssDwsU9-0-3f5ffd4a26a0f3fc73c9e0426623803c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0008.jpg?sign=1738809033-UEHg2kutCNzG2PqEcYsANbByyKEfrPPA-0-3c28005b9adc762caaaf1d6d54a1eda6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0009.jpg?sign=1738809033-Let6PRPMTadwo9GQt9qTAtU1A2lKPkgP-0-5a786abef92a47afbbf695cc6269fb24)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0010.jpg?sign=1738809033-IVlsnhWb9OF51dccqqluUIs2653h39jv-0-0ccb567d2dc115728b494349f71130f6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0011.jpg?sign=1738809033-E89SDMLYwnHPCfP2HIH1rmlVpmKq8hLN-0-deaa6780d9a1bb8734abb9538465203e)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0012.jpg?sign=1738809033-UgRE6jsoiwfPfJ9m3yowX1f7y8BBlQR7-0-ebc643efe89de608a0544490deab6f5b)
将式(5.3-13)各式分别代入式(5.3-14)中对应式,得到电场和磁场的横向分量,依次写为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0013.jpg?sign=1738809033-SoVqVzON8FjAUkgQbid5GdcJWn6D8YwV-0-cace9972a33e52740be65326d59e93db)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0014.jpg?sign=1738809033-PVLfx1UQHqyAN18eNwba7ix2S7IBADze-0-1f65aa3a33255b0ff1520677c171b026)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0015.jpg?sign=1738809033-Ebb30675KHZGYQ4GnhE3eCYoHk5Zpzrw-0-074ab0ed6d6b38eeee394baf4cf3cc9b)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0016.jpg?sign=1738809033-312hi68K7esnq69WbUYDVUWNmtY9nW4A-0-938c0046de8eaf0d701337f6ba66e7cd)
以及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0186_0017.jpg?sign=1738809033-lytK6iSKDNSsyyoLo0dyom4kuUbD7N3z-0-7cb4b19d5c573c5b7ac04a504335dd4c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0001.jpg?sign=1738809033-xu9CET7chwaSHgO7T3OpE4qJr5daa93r-0-971aec10b60f67353f67ee92a12824d8)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0002.jpg?sign=1738809033-xWxPah9kkMJXrH77wUY5OiU3zxYZIlQ4-0-1c8232a0aa56d0449e13fa4e8cb34d27)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0003.jpg?sign=1738809033-YBukyebRkHOLnJpOOvPC5BDTW7Kva3bs-0-58865a627890b6858905a9b7c5d1524b)
式中,J、K上面的“·”号表示对r的一阶导数。利用纤芯和包层界面处电磁场连续的边界条件,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0004.jpg?sign=1738809033-DuHd0cfSVRxoQ9dK7AZp9KiBdOv2uNsi-0-8e4d769e57f20312981f7299b4ce7000)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0005.jpg?sign=1738809033-iexdPm4QINGFtXFnLR5XTIRuKpuQE2wJ-0-e7c1b1fb06fe0986caa54d6b1a19e670)
将式(5.3-15c)、式(5.3-15d)代入式(5.3-17a),以及将式(5.3-16c)、式(5.3-16d)代入式(5.3-17b)得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0006.jpg?sign=1738809033-DeBh6bhLqbnPVd4hmfueh8PWMU35lOyO-0-601906921d7e8bb8b7e69244d7ebeb67)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0007.jpg?sign=1738809033-0LQWYxO8eTsOmnIEsQV1jdYIdRBX9jN7-0-8f5ebab508375243c52d81bec45c83c4)
注意,式(5.3-18a)与式(5.3-18b)右边相等,经过整理得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0008.jpg?sign=1738809033-KlW2BaGenpipqrs6lkHNJP4zzyC5sx03-0-c1935e03d18283ac55c511d88dfc3b45)
上式即为光纤的本征方程,式中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0009.jpg?sign=1738809033-dfgQzWyD80tbrOAhi7D2e3KRy9b45J6S-0-a064dbe0b1f189919c0cc983b7b518ed)
V称为归一化频率。式(5.3-20)中
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0010.jpg?sign=1738809033-C2XF0gJIRJS6wlgRpQgyMjnOPpWK24y6-0-cd29b12a1984dcf6647b1f5073bd9f5c)
将式(5.3-19)与式(5.3-20)联立,可以求出在一定波导结构和波长情况下U、W、β各参量。在弱导条件下,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0011.jpg?sign=1738809033-fA9nEzmXd8oEvri1StGyURdrWmk4E2c3-0-623c75bfc4d93ce09194da6347257179)
式(5.3-19)可以化简为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0012.jpg?sign=1738809033-qdVX55D0BJaWYNon5Q0kXmSVDYDZlanE-0-91e8bec178ed64e5708bc7b899321d46)
式中,m=0,1,2,3,…。
5.3.2 导模的分类
光纤中的导模包括TE模、TM模、EH模和HE模,下面依次简单介绍。
1.TE模和TM模
TE模对应于纵向电场Ez=0的电磁场模式。根据Ez表达式可知,对TE模有A=0,进一步可得
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0187_0013.jpg?sign=1738809033-KW8hlzp6CdmJur4oSbkrECui7XXnVguW-0-8d633633c04132f4fa018eae28f5b3e3)
由于B、β、U、W均不为零,因此上式成立的条件为m=0。此时,有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0001.jpg?sign=1738809033-dZztvO5YCtWuuY1zKeTEK3LocZZ4JeHo-0-f696bf4d3ad8e50d6519896cfd7b7236)
上式为TE模的本征方程。利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0002.jpg?sign=1738809033-6hTIaRE3JQpvT3IVVZ6DEObwsvPcSDeS-0-cf0e66ca99a949c993ebb9c1d2698cf6)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0003.jpg?sign=1738809033-6liCU3RjU7c2ApNDxWg5v7JdClEUVo48-0-05f8b016896aad0c161d2de0268c70fd)
可以将式(5.3-25)表示为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0004.jpg?sign=1738809033-3aQfjWGuFD3I2XMPBBL3z9yWVSHl2FyJ-0-32e32d63392199ecedfbe1a9ef5fa594)
TM模对应于纵向磁场Hz=0的电磁场模式。由Hz的表达式可知,对TM模,有B=0,类似分析可得m=0。于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0005.jpg?sign=1738809033-0XiQnb4ix5bgzJQPDvWGJ025EnwIuPHV-0-4932010790f82046cb0429fa849518ed)
上式为TM模的本征方程。
2.EH模和HE模
当m≠0时,A、B都不为零,表明Ez、H z将同时存在,不存在单独的TE模、T M模。这种Ez、H z同时存在的模式称为混合模,其中当Ez起主导作用时,称为EH模;当H z起主导作用时,称为HE模。
在弱导条件下,EH模和HE模的本征方程分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0006.jpg?sign=1738809033-237QDZXjNtuWNVQKuFMBPwvkDKgZDCZc-0-8a0e42f16e14c9ea6c5b44869e2c37d7)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0007.jpg?sign=1738809033-jiwr0YF9K9bcBZJRWtkNawGTTr5JF0Sf-0-b3c18d5943fc6333ba0f9ab6023a3b8e)
利用贝塞尔函数的性质
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0008.jpg?sign=1738809033-mc64N0hHuWzQTR58aPKb0RUcgPRPCa5m-0-95ba30401b42f66f81895b325cab7b1c)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0009.jpg?sign=1738809033-ERU980095NfsgvNw8o8RRetu8DmFFQ4S-0-33d5605d84724790bc7a8baedc2b42cd)
化简后得到
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0010.jpg?sign=1738809033-UgOLjopVEvSJW6XfFP85RHmBAh3ncoIe-0-e28ea3947834afb1bc1bc0acd6bc61bb)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0011.jpg?sign=1738809033-BBNDZosCMRPNWLKtdJ8XslfYGHHQKX2J-0-e5398d3e9a9a0f05e1acc25126e66242)
5.3.3 导模的截止条件和截止波长
1.导模的截止条件
当导模在波导中传播时,主要能量集中在波导芯层,沿纵向无衰减传播,U、W参量均为正数,导模场在芯层为振荡函数,由贝塞尔函数描写;而在包层中,导模场为指数衰减函数,由汉克尔函数描写。
U、W参量均为正数的条件为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0012.jpg?sign=1738809033-A1TjEJt7iyrErl4A84v4va2dUwhYnuFV-0-a9a76e5b781a9aeb513a7b2b70ca881f)
如果,则W2<0,包层中场量的解变成振荡解,即出现辐射模,导致光场能量不能集中在波导芯层传播而截止。W=0为导模与辐射模的临界情况。因此截止条件为W=0,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0188_0014.jpg?sign=1738809033-FnogA0BzPqCsTsyoG5A8fvbAgcJZKQx3-0-9cf702e2b88fc727251371502589af32)
归一化频率Vc满足
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0001.jpg?sign=1738809033-IlF6Ljwx5aIveWoYVS5jlpWgiCUEatRt-0-a5f11a2a90a8fef84da7e32515f5a6af)
即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0002.jpg?sign=1738809033-IwLc5z5VmEdHRdJJZeGM8JRis0YLtHpX-0-30e851ca76d2baa350409254a4124ae7)
通过本征方程求得Uc,进而确定Vc,最后获得各种模式的截止频率。
2.TE0n模和TM0n模的截止波长
对于TE0n模和TM0n模,因为m=0,所以式(5.3-19)变为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0003.jpg?sign=1738809033-MkOlnP9CcL58mGvJ2agKGEKwPHlQi484-0-8d19423116011e10a0f11847443406f2)
等号左侧前后两个因式为零分别对应于TE0n模和TM0n模。当W→0时,式(5.3-36)要求J0(U)=0,这就是TE0n模和TM0n模的截止条件。因为J0(U)是个振荡函数,它有许多根,不同的根对应不同阶模的截止条件。当n=1时,U01=2.41(U01的下标01表示零阶贝塞尔函数的第一个根),说明当纤芯半径a满足方程U01≤2.41时,TE01模和TM01模就因为截止而不存在了。对于更高阶的模,即n=2,3,4,…可以依次类推。截止时,归一化频率为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0004.jpg?sign=1738809033-BF4e3M71v2DG9iQY29cZdFYlSmVWEpET-0-c4c96eee2e8e09f2a75caa751bb18727)
当n=1时,对应的模TE01和TM01的归一化截止频率最低。由于U01=2.405,可得TE01(或TM01)模的截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0005.jpg?sign=1738809033-4eTz9dQxUpw3LKuTLZUmwuWz5zKbvM6L-0-6cc42d1e5feda7f4554788f3dcc0ac77)
当光纤的其他参量一定时,若λ≥λc,则相应的模式不能在波导中传播。
3.HE mn模的截止波长
截止时,W=0。根据HE模的本征方程,当W→0时,式(5.3-31b)右边的渐进特性应区分为m=1与m≥2两种情况。下面就这两种情况进行讨论。
1)HE1n模
当m=1时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0006.jpg?sign=1738809033-ldS7eaqTSSP98ML2GXTma3pCNswthuos-0-037b0f446bbc3d072d489effc7f73dea)
因此,当m=1时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0007.jpg?sign=1738809033-Qr31Fls6HPqpLGHoPPHFpKlB4b34xlLG-0-c74e24dcc577392b31c25f7d8e18cba6)
其解为Uc=0和J1(Uc)=0的根Uc=u1l,u1l表示一阶贝塞尔函数的第l个根。但Uc=0是否应舍弃需要进一步考察。因为当U→0时,J0(U)→1,因此是本征方程W→0时的解,应该保留。这样得HE1n模的截止参数为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0008.jpg?sign=1738809033-X6u7UvqgYbZzF6DmXVsJ8Su7qQ1AG0CH-0-d1448c93ef02612a92c47870f0f09764)
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0189_0009.jpg?sign=1738809033-y72p3xy16zvxmyoN32BLxWH1fyyYhSW9-0-7228ea1505bd467b5d4ba8c2dee2dc6b)
当n=1时,U11=0,对应的截止波长λc(HE11)=∞。说明HE11模没有截止限制,所以称为光波导中的优势模(即该模总是存在的)。
2)HEmn(m≥2)模
当m≥2时,Km(W)的渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0001.jpg?sign=1738809033-XtMraP5oNJygLWyXXqO0fkB5StVO658f-0-6e26b75c09473143a36e9c32c4be4c11)
利用贝塞尔函数递推关系
2mJm(U)=UJm-1(U)+UJm+1(U)
将式中阶数降1,即m→m-1,得
2(m-1)Jm-1(U)=UJm-2(U)+UJm(U)
因此当m≥2时,本征方程及其渐进方式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0002.jpg?sign=1738809033-aGmk5Qu73xmPrGkGvCQXvl7CTw1IBgRb-0-3d05ed3ffae06e3ea7bb6ce8fa2537a4)
于是当m≥2时,HE模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0003.jpg?sign=1738809033-wWo7wdphfUMfdHW2x2ZoxgRyS6eMaEA0-0-d2f1fb814fc4a5b1b98f8432533986dd)
上式的解为m-2阶贝塞尔函数的根,于是有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0004.jpg?sign=1738809033-XTHWTjMV61lGZaDV9lbcgpjmhapSgw8B-0-56768148c77e28925b68f87854e0b924)
对HE21模,U01=2.405,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0005.jpg?sign=1738809033-qx0J7F82racnzASMXpav9Rf2p1gOVv8K-0-54bfa956630dd0868262fc728c7d446a)
容易验证,HE2n模与TE0n模、TM0n模具有相同的截止波长,它们是简并模。
4.EH mn(m≥1)模的截止条件
根据EH模的本征方程(5.3-31a),当W→0时,该式右边的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0006.jpg?sign=1738809033-jHOOoljl5NWdlcCymtHM8AOQl4W3a5wm-0-3381af7c7bed0f1f1c0ca84f0dc50daf)
因此有
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0007.jpg?sign=1738809033-RAtJQIzDUQ65uWk2it0xgayXHaYgoGbg-0-9825fb6a1d853bbdbe48502e47d94e6b)
注意到当Uc→0时,上式的渐进式为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0008.jpg?sign=1738809033-yYIGDJVEVVMs3gfy22HEz9ijgSYwLCFP-0-3d4ec13a7d96ebb6a5daa857c115b1b4)
可见,截止时Uc≠0,因此当m≥1时,EH模在截止状态下的本征方程为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0009.jpg?sign=1738809033-6OmBmaAz9b6EDTC4od2XZICUaLaJ8coB-0-312194d6b5a890cab241e56f2b5c86b9)
这里Uc≠0表示,Jm(Uc)=0的第一个根要从Uc≠0的根算起。这样,截止参数Uc或归一化截止频率Vc为m阶贝塞尔函数的根Umm,即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0010.jpg?sign=1738809033-hDtNoRVEqmOKyKz0ay6mLyamgS5brbG8-0-1bc9350d6769539d38d164c9efe56170)
例如,对EH11模,U11=3.832,截止波长为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0190_0011.jpg?sign=1738809033-dTNCjvFJf9DYXedVcRZTrpwxLIeqTsm8-0-a18dac461c9d4939faced16b11a9b086)
5.3.4 色散曲线
光纤中导模的传播特性与U、V、β等参数有关。U、V决定导模光场的横向分布;β决定导模光场的纵向分布。归一化频率V是与光波的频率、波导尺寸及折射率分布有关的无量纲参数。一旦归一化频率V给定后,则根据本征方程可以确定U、W等参数,并进一步获得纵向传播常数β,也即
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0001.jpg?sign=1738809033-9UmtkMhTkxjmdfQ89bDcsAOKNz7okKoG-0-b85cb11ec88caca02e8b6c0d48401f52)
改变V的值可以得到不同的β,从而得到各种模式的β-V关系。另外,波的相速vp和群速vg分别为
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0002.jpg?sign=1738809033-Wd1VVeI0WqObhgYfw2JytS5mp1O3rZPS-0-8066a336a3eefdebc973666bd2a8bc71)
及
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0003.jpg?sign=1738809033-PDUwyQYYyPOK8p4vIxmco4HsogUVybd5-0-51d4f88cbb899a153ebffe29a27e034f)
如果知道β-V关系,就等效于知道β-ω关系,即色散关系。根据色散关系,可以获得不同模式的群速和相速关系。图5.3-3所示为几个低阶模式的色散曲线。图中横轴表示归一化频率V,纵轴表示归一化相位。
![active=true](https://epubservercos.yuewen.com/2AAF26/3590469403000301/epubprivate/OEBPS/Images/figure_0191_0005.jpg?sign=1738809033-HFLt5MCpt4dyGXY8In0Q228Q0pM6iQE1-0-f3705d8b3eb6790b93f52ec47890c0e9)
图5.3-3 几个低阶模式的色散曲线