![运动学与动力学](https://wfqqreader-1252317822.image.myqcloud.com/cover/733/677733/b_677733.jpg)
2.2 点的运动方程合成——三种运动方程间的关系
本节分析三种运动——绝对运动、相对运动和牵连运动之间的关系。一般来说,若已知动系运动(即牵连运动)的规律,则可以通过坐标变换来建立点在定系中的坐标(或矢径)与在动系中的坐标(或矢径)的关系。如图2-2所示,定系为O1x1y1z1,沿其坐标轴的单位矢量分别为i1, j1, k1;动系为O2x2y2z2,沿其坐标轴的单位矢量分别为i2, j2, k2。r1为绝对运动的矢径,r2为相对运动的矢径。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739310775-7POqnhoPoyqOodHmBaEHhtYYJ89Fqt7k-0-f7ba159f04b81672347d1332ead008b6)
图2-2 定系与动系中矢径的关系
由图2-2可知
因为
r1=x1i1+y1j1+z1k1, r2=x2i2+y2j2+z2k2
所以
x1i1+y1j1+z1k1=xO2i1+yO2j1+zO2k1+x2i2+y2j2+z2k2
即
(x1-xO2)i1+(y1-yO2)j1+(z1-zO2)k1=x2i2+y2j2+z2k2
将上式两边依次点乘i1, j1, k1,可得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739310775-J8gdtY68QKvBLoQ1MF47D79PyFKIkpLh-0-cf4aeeb9c4dcb39221bdcea7c8b31591)
将上式写成矩阵的形式为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739310775-GKVTsNtJ7fV8Cj3mp3qsEdgMk5uyGjXU-0-de299cef901277dbbdd79636844c49ef)
若记
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739310775-bjmwHizSBMFwUMk9rGjIdQMt4FZzc33N-0-e62b03eb5a9d0b0a23a93d730c2abbd9)
则式(2-1)为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739310775-gjLrBFH8f9j65X7F2PXGQOaPS082qtlM-0-28be963c41dc9a8259d3ad506e71fcec)
式中,C12称为变换矩阵(transformation matrix)。特殊地,若动系与定系的坐标原点重合,则有
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0005.jpg?sign=1739310775-huh4lqJIWTFeDaFhs1CMK0EDT8gimrrE-0-b52b9edba39e88c2432562653f9794c0)
二维情况的简化
对于二维问题,其定系为Oxy,动系为O'x'y',动点为M,如图2-3所示。其变换矩阵为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0006.jpg?sign=1739310775-wGlas6r5e3OlNQCrntOqOODCRpFqTgZ1-0-cb65aacc77132771723b8072abac717c)
图2-3 二维情况
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0029_0007.jpg?sign=1739310775-0FJ96ahhIqV7LZlaXBWa6kOgWaGAKGG4-0-b13b9a1414b8cd87f78c748f2f2ab70e)
若绝对运动方程为
x=x(t), y=y(t)
相对运动方程为
x'=x'(t), y'=y'(t)
牵连运动的方程为
xO'=xO'(t), yO'=yO'(t), φ=φ(t)
则不难得到三种运动方程间的关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739310775-dAg4LDoerykIeMsL3eNCdCRnFWnlvWw1-0-53c8a69350c568aabc7c84504ce57dde)
例题2-1
点M相对于动系Ox'y'沿半径为r的圆周以速度v做匀速圆周运动(圆心为O1),动系Ox'y'相对于定系Oxy以匀角速度ω绕点O做定轴转动,如例题图2-1所示。初始时Ox'y'与Oxy重合,点M与O重合。已知OO 1=r,试求点M的绝对运动方程。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739310775-7hVR0GI5DcICU6bywmgIpmbVE1GjtdGR-0-d5fe8e59ab2510da638950a39bcb47d9)
例题图2-1
分析:本题是已知点M的相对运动方程,求点M的绝对运动方程。为此,只要利用式(2-1)写出上述两种运动方程之间的关系即可。
解:
点M的绝对运动方程与相对运动方程满足如下关系:
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0003.jpg?sign=1739310775-HP8Jd1p4sXyuK996c9mzMia2dZIaUecR-0-48f8957b5d4913cbe0b455aa5b968d47)
连接O1M,由图可知:。于是,得点M的相对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0005.jpg?sign=1739310775-4rN5KC7QdrM7fbTj9PtCV2N3WfTvWWrp-0-3fb01e47b1c49cd11d9954b20e2c318e)
牵连运动的方程为
xO'=xO=0, yO'=yO=0, φ=ωt
利用坐标变换关系式(a),可得点M的绝对运动方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0030_0006.jpg?sign=1739310775-g6WCuPCtDhis0P08VDPYVcLBLVbxqAdC-0-4849c971e1fc9f58ba589fc7111764c8)
例题2-2
用车刀切削工件的端面,车刀刀尖M沿水平轴x做往复运动,如例题图2-2所示。设Oxy为定坐标系,刀尖的运动方程为x=b sinωt。工件以等角速度ω逆时针方向转动。求车刀在工件圆端面上切出的痕迹。
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739310775-mgxR7xqd5MNh9QkwM4k7FFrZCtR1J91C-0-37379facbc5b90e0b11206b948891cbc)
例题图2-2
分析:本题是已知车刀刀尖的绝对运动方程,求刀尖M相对于工件的轨迹方程。
解:
车刀刀尖的绝对运动方程和相对运动方程间的坐标变换关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0002.jpg?sign=1739310775-17k90MI1DOtoSIfz5wgJ5zv5PO0TbCd2-0-21ebc066f8625e8fbeba57dd71874133)
取刀尖M为动点,动系固定在工件上,则动点M在动系Ox'y'和定系Oxy中的坐标关系为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0003.jpg?sign=1739310775-tDQ7Xfkm5jbdj4x2otPFhsrzciVbA5U5-0-29bb9d50a992fa3d644243a8bb00d27e)
将点M的绝对运动方程(x, y)=(b sinωt, 0)代入式(a)中,得
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0004.jpg?sign=1739310775-LVc9vjZRKYYoKDELoPRhGbk01DIzUF01-0-d1daafb496d4ec175789ec299660e044)
上式即为车刀相对于工件的运动方程。
从上式中消去时间t,得刀尖的相对运动轨迹方程为
![](https://epubservercos.yuewen.com/2C4459/3590371004171201/epubprivate/OEBPS/Images/figure_0031_0005.jpg?sign=1739310775-l5Kn2G7QnMhgt8c2cIFydi8e4EX0EWaz-0-aad62ea59dd8c03b9a41c25784b3a921)
可见,车刀在工件上切出的痕迹是一个半径为的圆,该圆的圆心C在动坐标轴Oy'上,圆周通过工件的中心O,如例题图2-2中的虚线所示。